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Bifurcation theory for stationary motions was developed by Poincare’ [l] and 
Chetaev [2] for Lagrangian conservative mechanical systems. This theory is 
based on the investigation of the (transformed) potential energy of the system 

pi = 1’ (c, ql, . . ., qm), where qll . . ., q,,, are the Lagrange coordinatesand 
c is a parameter. For three problems in solid body dynamics we have shown 
below that this theory is applicable for the investigation of systems with known 

first integrals (1 (x1, . . ., 211) =- c, CT, (z-1, . . . , m) = Cl, . . . ) 

uk (11, . . ., r,) = Ck (k + 1 < n) 

As in the classical case, here we can introduce the function 
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w (Cl, . . ., Ck; ii,, . . ., hk, 51, - . .I zn)= U+h,(u,-cC,)i-... 

+Ak(Uk-Ck) 
whose role is analogous to that of potential energy in the Poincard-Chetaev 

theory ; here AI, . . ., ak, x1. . . ., x, formally play the role of the vari- 
ables %, . . , , qm (k + n = m). 

1. We have the equations 

dWld?b, = u,- Cl = 0, . . .) awlah, = Uk - Ck = 0 0.1) 
aw/ax, = 0, . . .( awlax, = 0 

for defining the stationary motions. Let 

Aj pJ Ajo (Cl, e . a, Ck), Xi z Xi’(C,, . . ., Cl{) 
0.2) 

(/‘=I,. . ., k; i=l,, . ., n) 

be a real solution of system (1.1). By A we denote the Hessian of the function W in 
the variables A,, . , ., hkr xl, . . ., X,, computed for solution (1.2). We have A =~ 
0 at the branch points of the solutions of Eqs. (1.1). Points for which A == 0 are called 
bifurcation points. This definition coincides with the definition of bifurcation points for 

Lagrangian conservative mechanical systems [ 21. 

Let Cj zx Cj (a) (i = 1, . . ., k) be certain continuously -differentiable functions 

of parameter a. The expressions 

(1.3) 

hold for the derivatives dAj” i da and dxi” / da , where A(/) denotes the determinant 

obtained from A by replacing its 1 th column by a column with the components dc, / 
da, . . ., dc, / da, 0, . . ., 0. Relations (1.3) are analogs of relations well known in 
bifurcation theory (see the expression for 6 on p.42 of [a]); on this basis the analysis 

of the bifurcation points of the original system with many degrees of freedom can,under 

specific conditions, be reduced to the investigation of rhe bifurcation points of a certain 

reduced system with one degree of freedom, and v i c e v e r s a. 
We obtain the sufficient stability conditions for motion (1.2) from Routh’s theorem as 

the sufficient conditions for the sign-definiteness of the quadratic form 

under the conditions 

(1.4) 

These stability conditions can be represented in the form 

D, > 0 or (-l)*Dv > 0 p=1,...,n-k) (1. ‘3) 

where D, denotes the (21% + Y) th-order principal diagonal minor of the determinant 
D = (- l)k A = Dn_k. 

We examine the equation 
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I 0 B 
A(x) = B’ A - xE, I 

where 

@ is the (k X k) zero matrix, E, is the nth-order unit matrix, and the prime de- 

notes transposition. This equation is a natural generalization of the secular equationand 
has the real roots xl, . . . , h-k which are the analogs of the Poincari stability coef- 

ficients, while the number of negative roots is the analog of the degree of instability X 

of motion (1.2) if A (0) = A # 0. When the system’s motion is described by equa- 
tions of the form 

dxildt = Fi (Xl, s e e, X,). (i=i,. *. 1 n) 

the following analog of the Kelvin-Chetaev theorem holds [Z]. 

Theorem. If D = (- 1) "A < 0, and if the equation 

l~(~),-s8iil~~ = (_ 1)” $+I (J2P ( + w2(p’-1) + * * * + g,,a2 $ gp) = 0 (1.7) 

where k $ 1 + 2p = n, 1 > 0, 6ij are the Kronecker symbols, has no more than 

k zero roots, then the unperturbed motion (1.2) is unstable ; here Eq. (1.7) has an odd 

number of positive roots. 
The proof of this theorem is simple but cumbersome and is based on the investigation 

of the quadratic first integrals of the variational equations. 

2. Let us examine the problem of the bifurcation and stability of the permanent ro- 

tations of a balanced gyrostat. Volterra [3] made a full investigation of these motions 
on the basis of a theorem which essentially is a modification of Routh’s theorem. Rumian- 

tsev [4] has investigated by Lianunov’s direct method the stability of the permanent rota- 
tions of a gyrostat around its principal inertia axes which are possible under the condition 
that the gyrostatic moment vector is collinear with a principal inertia axis. However, 

the question of the bifurcation of these motions remains open. 
The equations of inertial motion of a gyrostat with one fixed point 0 admit the in- 

tegrals 
U = 2 (Jio, + g# = consl, UI = 2 Jlo12 = h = con& 

(123) (123) 

Here oi, gi (i = 1, 2, 3) are the projections of the gyrostat’s absolute instantaneous 

angular velocity vector and of the gyrostatic moment vector onto the principal axes of 

its inertia ellipsoid for point 0, Ji are the gyrostat’s principal inertia moments ; the 
summation sign with the symbol (123) denotes that two other terms are obtained by a 

cyclic permutation of the indices 1, 2, 3. 
From equations of form (1.1) we find the following expressions for the projections of 

the angular velocity of the gyrostat’s permanent rotations: 

where h = h (h) is an algebraic function of parameter h defined by the equation 

h = 2 J1R12 
(123) (h - Jd2 

(2.2) 
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The sufficient conditions (1.6) for the stability of motions (2.1) are reduced to the 

inequality 
D = - LJ = J1J2J3 (h - Jr) (h - 62) (1 - Jsf ,I;s, s >o (2.3) 

By virtue of the above-cited theorem this condition is also a necessary stability condition. 
The first of formulas (1.3) leads to the relation 

LIZ----d= + J1JsJs (Jr - hf (J, - h) ($3 - h) $ (2.4) 

from which it follows, in particular, that if h # J,, J,, J,, then A = 0 if and only if 

dh / da = 0; therefore, at the bifurcation points, for which L! = 0, the function h my= 

h (1) has stationary values. 
The generators 

x 61 (Jz - Lf3) fr).#+j = 0 (2.5) 
(1 2 3) 

of a cone serve as the axes of the gyrostat’s permanent rotations (2.1) in the body. The 
set of permanent rotations (2.1) can be represented geometrically as the curve 3; = 
h (h) defined by Eq. (2.2). The correspondence between the points of curve h = k(h) 
and the cone’s generators (2.5) is established by formulas (2. I), 

Figure 1 shows the graph of the function h .- h (3L) for the case when 

(J, - JJ (J, - J1) (Jl - J2) m,g, # 0 (Jl< J, < J3) (2.6) 
By ~j --z hj (h) (i = 1, * s a) 6) we denote the branches of curve k = h (h). As h 

varies within the intervals 

O<h<m, 00 > h > h**, h,, < h < 03, 00 > h > h, 

h,<!h<m, 00 > 12 > 0 (h, = h (&), h,, = h @,,)) 

the values of h, range within the intervals 

- 00 < hr < 21, J1 < ka < A**, A** Q A, -=C J, 

J, < A, < L+zt 1, < -h, < J,, J,<h&j<m 

where h,and h,, are roots of the equation dh J dA = 0. By virtue of (2. l), to these 

h 
six branches of curve a = h (h) there correspond 

iZl 

/ j 

IZi iI!:"!{ N7/ 1 iUl 

~ 

in the space (ml, 02, 03, h) six branches of the 
f’ \ 

h ** 
/I\ i curve oi -= oi (h) (i = 1, 2, 3) ; here thevalues 

I fs = h, and h ; h,, correspond to bifurcation 

Ii* /’ points. These points are the limit points for those 
branches of curve wi == oi (h) (i -= 1, 2, 3) which 
correspond to the branches h,, h, and A,, lWk of 

u 4 A, tr, &,JJ A curve h == h (h). As h varies in the intervals 

Fig. 1 O(h(h,*, h,,<h<& andh,<h<= 
we have, respectively, two, four and six branches of 

the Curve ~i = wi (h) (i = 1, 2, 3). 

The results of the investigation of stability condition (2.3) with the use of relation 

(2.4) are shown in Fig. 1 where the digits (0), (1). (2) on the branches of curve h = h X 
fh) indicate the degree of instability of motions (2. l), while bifurcation points corres- 
pond to the values 1” = & and h = A,, . Yf condition (2.6) is not satisfied, the per- 

manent rotations and their stability conditions can be obtained from (2. I)-(2.3) by 
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appropriate passage to the limit. 

For example, let g, = 0, g,g, # 0, J, < J, < J,. Then 

01 = x6 (J1- h) , m- -&, w3= -pJ (x is a parameter) (2.7) 

where 6 (T) = 0 if x # 0 and 6 (0) = 1. In space (h, A, x) the motions (2.7) can be 

Fig. 2 

J, , respectively. 

represented geometrically as a sur- 

face h = 1~ (A, X), whose equation is 
obtained as a result of substituting 

the values (2.7) into the energy in- 

tegral U1 = It. This surface consists 
of the cylindrical surface IL = 11 (A, 

O), h # J, from which is removed 

the generator corresponding to the value 

A,= J,, and ofthe parabola IL = h (J1, x), 

h = J,, located in the plane h = J,. 

The cylindricalsurface and the parabola 

have one common point for which h = 

J,, X = 0, h = 1~ (Jr, 0). Keepingin 
mind the fact that to each of the gene- 

rators of the c:ylindrical surface there 

corresponds one and only one motion 

(2.7) we associate with the genera- 
tors of this surface the points oftheir 

intersection with the plane x. = 0 
and for the geometric representation 
of motions (2.7) in the space (h, A, 

z) , instead of the surface 1~ = IL (h. 

x) we examine the curve 1 whose 

individual branches lie in the ortho- 

gonal planes x = 0 and h = J, and 

are specified by the equations h = 
1~ (h, 0), x=0 and 1~ = h (J1, x), h == 

The form of the projection of curve 1 onto the plane x = 0 is shown on the left in 
Fig.2, a, while onto the plane h = J, for h < J, is shown on the right. Expression 

(2.4) for D takes the form 

D = + J1Jd3 (JI - h) (J* - h) (Ja - i.)$ , if A# JI 

D = +Jd& (Jz - JI) (J3 - JI) x $ , if h=Jl 

Using these relations and the form of curve 1 we conclude that motions (2.7) are stable 
if h > J,, h, < h < J, or h < J,, where h, is a root of the equation ah 1 ah = 0 and 
are unstable if J, < h < J, or J, < h < h,; for h = J, we have D > 0 for all x # 
OI and motions (2.7) are stable. Bifurcation points correspond to the values h = h,, 
x = 0 and h = J,, x = 0 . In Fig. 2a, the digits (0), (l), (2) indicate the degree of 
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instability of motions (2.7). 
Now let gl = g, = 0, g, $1 0, J, < J, < J,. Then 

01 = x6 (J1 - h), 02 = x6 (J, - h), w3 = g3/@ - J3) (2.8) 

The projections of curve 1 onto the plane x = 0 and onto the plane h = 0 for h < Js 

are shown in Fig. 2, b ; bifurcation points correspond to the values h = J,, x = 0 and 

h= J,,x=O. 

Finally, when g, = g, = g, = 0, J, < Jz < J, (the Euler case), from (2.1) and (2.2) 
we obtain 

01 = x6 (Jl - h) (1 2 3), h(h,X)=XZ 2 J16(.71-?L) 
(123) 

From stability condition (2.3) we conclude that the body’s uniform rotations (2.9)around 
the minor and major axes of its inertia ellipsoid are stable, while the rotation around the 

middle axis is unstable. The’ projections of curve I onto the planes 3~ = 0 and h = 0 
are shown in Fig. 2, c ; here all points of the h-axis are bifurcation points and correspond 
to a neutral equilibrium position of the body. 

3. Let us examine the problem of the motion in a central Newtonian force field of 
a solid body with one fixed point and with a cavity wholly filled with a homogeneous 
incompressible viscous liquid. We introduce a moving rectangular coordinate system 

O~,~,~, with origin at the body’s fixed point 0 at a distance R from the center of 
attraction IL’ , and with axes coinciding with the principal axes of the system’s inertia 
ellipsoid for point 0. For simplicity of computation we assume that the principalaxes 
of the liquid’s inertia ellipsoid for point 0 coincide with the axes x1, zz, x3. We in- 
troduce the notation : Aiy Bi, Ci (i = I, 27 3) are the moments of inertia relative 

to the xi-axis of the body, of the liquid and of the whole system, respectively ; oi, Gi, 
gi are the projections onto the xi-axis of the body’s instantaneous angular velocity vec- 

tor, of the liquid’s kinetic moment vectors relative to point 0 in its absolute and rela- 

tive motions, respectively; ui are the projections onto the same axis of the relative velo- 
city vector of the liquid particle with coordinates x,, x2, x3; T is the cavity volume ; 
p is the liquid density; p is the coefficient of viscosity; g is the gravitational accele- 

ration at a distance R from the center of attraction ; y = 3gR-‘; ei are constants 

proportional to the xi-axis projections of the vector from point 0 to the system’s cen- 

ter of inertia ; yi are the direction cosines of the “vertical” NO relative to the Xi-axis. 
The expressions for the kinetic and potential energies of the system have the form 

r4, 51 
T = + 2 (A,q2 f B1-lGIZ + q*), II = + 2 (vC,,~ + 2e,r,) 

(123) (123) 

G1 = 0, -;- g,, wl‘) = p 1 [ul + (ot - B2-1G2) x3 - (w;j- B,-%3) 221’ dr (1 2 3) 

The theorems of the kinetic energy and kinetic moment of the system lead to the rela- 
tions 

dU _ -_- 
dl ddt F+v- -Ppp(gp- 

($ + +$] df, U, = 2 (_A,w, + G,) yI = A = const 
(123) 

The values of variables oi, yi, Gi, Wi (i = 1, 2, 3) for which u has stationary values 
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under the condition Us = yl” + ys2 + y3 2 = 1 and for a given magnitude Ui = k 

of the area integral, correspond to permanent rotations of the whole system as one solid 
body around the vertical y, defined by the formulas 

01 = ~1, Q (Cl - h) y1 = el, G1 = oBlyl, wl= 0 (~1 = 0) (123) (3.1) 

Here the dependences o) = o (k) of the angular velocity o of the permanent rotation 
and of the intermediate parameter a on the constant k are determined by the relations 

The sufficient stability conditions (1.6) for motions (3.1) with respect to the quanti- 

ties oi, yi, Gi, wi (i = 1, 2, 3) when 

0 2 (C2 - a2 rz2r32 =+o 

(123) 

(3.3) 

reduce to the inequalities [5, 61 

D = A .= (4dL j- QCS) Q > 0, A1 = QI, > 0 (3.4) 

L = 2 (h - C,) (C, - C$ yz2T32, s == 2 (h--C,) (h -- C,) 712, C- 2 Cly13 
(123) (123) (123) 

If condition (3.3) is not satisfied, the second of inequalities (3.4) should be replaced by 
the following : 

AI'= 409 2 (C2 -C3)z 72'73" + CS! 2 (h - Cl)(~~'$~3~)> 0 t3a5) 
(1 2 3) (1 2 3) 

If the sign of even one of inequalities (3.4) or (3.5) changes to the opposite one, the 
unperturbed motion (3.1) is unstable [4]. 

If there is no liquid in the body’s cavity, then by virtue of the theorem cited in Sect. 

1, motion (3.1) is unstable if the inequality in the first of conditions (3.4) changes sign. 
If, however, A > 0 but A1 < 0 or A,’ < 0, then to resolve the question of stability 
we should investigate the roots of the characteristic equation 

CT” (goa -t g,02 + 62) = 0 (3.6) 

g, = CtCJ3, g, = 2 Cr {(rz + c, - Cl)? CO* -t [C, (h - C,) t 
023) 

c',(h - (‘3)1 Q> ~1'3 gz = A 

If even one of the inequalities 

Rl< 0, g, -=c 0, g12 - 4gog2 < 0 (3.7) 

is satisfied, among the roots of Eq. (3.6) we can find a root with a positive real part, and 

motion (3.1) is unstable ; here x = 1 if g, < 0, and x =: 2 if g, > 0. However, 
if all the inequalities in (3.7) change sign, then motion (3.1) is stable in the first appro- 
ximation and x = 2 if A, < 0 or Al’ < 0. In this case, if among motions (3.1) 
there are stable ones, then their stability bears a gyroscopic nature and collapses when 
the system is acted on by dissipative forces with complete dissipation (the latter occurs, 
for example, when a viscous liquid is present in the body’s cavity). 
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4. The generators of the Shtoude cone in the body 

2 e, ((‘? --.- (I,) T.2*(3 e-z 0 
0 2 3) 

Serve as the axes of permanent rotatim (3,X). The set of motions (3.1) can be repre- 
sented geometrically in the form of the curve 3. z h (k) defined by Eqs. (3.2). The 

relation between the points of curve h = h (k) and the Shtoude cone generators is es- 
tablished by formulas (3.1). 

From (1.3) we obtain the relation 

rlk WL f 0C.C -- 
dh - %>(CL- h)(C2- h)(C3- A) 

and we can represent the expression (3.4) for A as 

A = 2 o!? (C, - ?L) (C, - h) (C, - h) dkld3, (4.1) 

Hence it follows that if k # 6’r, C,, C, and o f 0, then A = 0 if and only if 

dk i dh = 0. At the bifurcation points for which A = 0, the tangent to curve k = 
k (h) is parallel to the h-axis. 

Fig. 3 

Figure 3, a shows the graph of the function k :-= k (h) inverse with respect to the 
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function h = h. (k) for the case when the equation St (h) = T has six real roots 

Aj’(j = 1, . . ., 6) and 

(C, - C,) (C, - C,) (C, - c,t ele,e3 # 0 (C, < C, < C,) (4.2) 

To analyze stability conditions (3.4) we use also the relations 

d!b RS CiC ‘I, 

-3x-= (Cl - h) (C, - a) (Cs - h) ’ dh = (Cl - h) (C2 - a) (Cs - a) 
(4.3) 

The second of these relations shows that if h # c,, c,, c,, then dC / dh = 0 if and 
only if L == 0. Let us show that the equation L (R) : 0 has only one real root h z= 

h’ and &r < a’ < c,. In fact, by substituting into expression (3.4) the values for 7%~ 

YZ, y3 from (3.1) for L , we represent L (h) as 

where 

L (h) == (I) $1 
523 (c1-?b)"(c2- h)2(C3 - b)" 

(D (h) = 2 (h - Cr)a (C, - C,)’ e,“e32 = a,,hs - 3alh’ + 3o,h - cc3 
(123) 

a, = 2 Ci” (C, - C3)* e,*e,’ > 0 (IU =. 0, 1, 2, :i) 
023) 

Hence it follows that the sign of function L (h) coincides with the sign of @ (h) ; here 

@ (A) > 0 if h > C, and @ (A) < 0 if h < Cr. Further, the trinomial d@ / dh 
has complex roots since ai’ - uou2 < 0 by virtue of the Cauchy-Buniakowski ine- 
quality. Consequently, the equation @ (A) = 0 has only one real root h = h” ; more- 
over. since 

(I> (C,) =: (C, - C,j2 (C, - C,)“e, z l(C, - C,) e3* - (C,----C&I*~ 
we have 

c, < A” < c,, if (C, - C3) e32 < (C, - C,) er* (4.4) 

c, < A” < c,, if (C, - C,) e3* > (C, - C,) e, 

Figures 3 b. c, show the graphs of the functions 52 = 9 (A) and C = -C (h) 

when conditions (4.2) and (4.4) hold. Here C, denotes the system’s moment of inertia 
relative to the straight line passing through the fixed point of the body and the system’s 
center of inertia. 

Note 1. For the geometric representation of motions (3.1) Kuz’min [63 used the 

function $2 --_ Q (h) for the problem being considered here in the absence of the liquid. 
To study the Kharlamov’s cone directrice of the axes of uniform rotations of a heavy 
gyrostat, the function o = o (h) was considered in lJ7. 8](for the permanent rotations 

of a heavy solid body Q (h) and o (h) are related by 51 (A) = ~2 (h)) . For this function 
there holds a relation analogous to the first one of (4.3) ; the latter relation was used to 
delineate a certain segment on the curve o = w (A) for which the stability conditions 
for the uniform rotations of a heavy gyrostat are satisfied. However, as seen from (3.4). 
(4.1) and (4,3), the critical points of the function o = o (h) for which do / dh = 0, 
are not bifurcation points in the sense adopted here and a change in the degree of insta- 
bility of the unperturbed motions being investigated does not occur at these points. 

6. By hjand jL’j (j = 1, . . ., 6) we denote, respectively, the roots of the equa- 
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tions dk / da -= 0 and !I (A) = v, numbered so that the inequalities 

hold in accordance with Fig. 3, a. Let us investigate the distribution of stable and un- 
stable motions (3. l), at first on those branches of curve lc = k (h) which do not inter- 
sect the a-axis; for these branches <> (lb) > 0. 

Let 1” > es; then /, (a) > 0, S(h) > U , and conditions (3.4) are satisfied. Mo- 
tions (3.1) are stable for h > C, and j! -: 0. Now let C, < h ( C,; then 

q (jb) LY (Ci - A) (C, - 1”) (C, - A) > 0, while o (A) and dk /: dh (see Fig.3, a) 
have values of the same sign if ?L!, < h < C :+, and values of different signs if C, < 
JV < is. By virtue of (4.1) we conclude from this that A > 0 if ).r, < X < C,, 

and A < 0 if C, < 3, < A,. Further, for h =C, (h # C,) we have L 0.) > 0 
and conditions (3.4) are satisfied for such ?, . Since the condition A ,, 0 is the first 

to be violated [S] as h varies continuously from the value for which conditions (3.4) 
are satisfied, it follows hence, firstly, that A” \‘\ lbz and, secondly, that motions (3.1) 
are stable (X = 0) for i., < h < C, ,and unstable (X --= i) for C, < h < A5 . 
Analogously, it is not difficult to show that motions (3.1) are unstable for ?b < Cz (h # 

Cl) , where ;C = 1 if 1&y < 2. < C,, and x = 2 if C, < li. < iL: or 3. < C1. In 
addition, the inequality pVz -< h” must hold. 

We now consider the branches of curve k ~1 ,riz (A) which do intersect the h-axis ; 
for these branches Q (a) < 0. Let ?t > ?.s’; then A1 I-= QL < 0, cp (h) < 0, while 

o (h) and dk / dA have values of different signs if Iti > lb6 and values of the same 

sign if 7~s’ < 1” < 1”s. By virtue of (4.1) and (3.4) we conclude from this that motions 

(3.1) are unstable and X : 1 if jV > h, and x -= 2 if aa’ < i, < Aa. Analogous 

arguments lead to the following conclusions. Motions (3.1) are unstable if ib,’ < a< 

La’, ;.a < i, < ha ’ or 1” < a,,and are stable if &’ < h < I,, or A, < h ( hi’. 
The results of stability investigation of motions (3.1) are shown in Fig.3, a where 

the values a = kj (j = 1, . . ., 6) correspond to bufurcation points. The distribution 

of the degree of instability on the branches of curve 3. = a (k) holds also when there 
is no liquid in the body’s cavity. In addition, in this case there exists h : h, < C, such 

that motions (3.1) are stable in the first approximation if a, < %” < As (h # C,),and 
unstable if k < h, , on the branches of curve h =- k (k) for which Q (h)> 0 . We 

note that results analogous to the latter were obtained in [8] for the permanent rotations 

of a heavy gyrostat. 
For fixed values of Ci, ei (i 1, 2, 3), satisfying condition (4.2) and for a conti- 

nuous variation of parameter v from the values for which the equation 9 (1”) v has 
six real roots to zero of the branch of curve k = k (h) ; they intersect the %. -axis, are 
deformed continuously so that the branches located between the values 2. cl, c, 
and h C,, C, shrink to a point lying on the h-axis and vanish, while the branches 
for which h < C1 and h> C, go off to infinity along the h-axis: h,’ ---t - 30, 
&’ + im 00 as v + 0 (v > 0). In the limit as v -+ 0 (v > 0) we obtain the geop 
metric representation and the distribution of the degree of instability of the permanent 
rotations of a solid body with one fixed point in a uniform gravity field. 

When condition (4.3) is not satisfied the investigation of the bifurcation and the sta- 

bility of motions (3.1) can be carried out analogously as indicated in Sect. 2. For these 
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cases the system’s permanent rotations depend upon two parameters il and x and these 
motions can be represented geometrically in the space (k, a, x) as a surface k = k (ii, 

x) whose equation can be obtained by substituting into the area integral Ur = k the 
values of Of, yi, G,, Wi (i = 1, 2, 3) corresponding to the permanent rotations being 

examined. The surface k = k (A, X) consists of a cylindrical surface k = k (A, O)t. 

to each of whose generators corresponds one and only one permanent rotation, and ofone, 

two or three curves located in the planes L = Cr, C,, C, and given by the equations 
k = k (Ci, x), A = Ci (i = 1, 2, 3). 

Note 2. The problem on the motion of a solid body with one fixed point in a cen- 

tral Newtonian force field [9] is dynamically equivalent to the Brun problem and to the 

problem on the motion of a solid body (whose geometry and mass distribution satisfy the 

condition of the second integrable Clebsch case) in an unbounded ideal liquid under 

Chaplygin conditions, when the body’s weight and the Archimedian propulsion force are 

equal in magnitude, while the impulsive force is vertical. Therefore, any result pertain- 

ing to one of these three problems can be extended to the other two. In particular, the 

geometric representation of the constant helical motions of the body in the liquid and 
the distribution of the degree of instability are the same as in Fig. 3, a ; the parameter 
,+ can be interpreted as the pitch of the body’s helical motion. 

As applied to the Brun problem the results obtained in Sects. 3- 5 correspond to the 
attracting plane (Y > 0). The investigation of the bifurcation and the stability of the 

permanent rotations of a body for a repelling plane (Y < 0) can be carried out by ana- 

logy with Sects. 3- 5. The investigation carried out shows that the branches of curve 
k = k (h) for which Q (h) < 0 should be discarded since they correspond to purely 
imaginary values of parameter k, while the branches for which B (h) > 0 intersect the 
h-axis at points determined from the equation B (h) + Y = 0 and tend to the values 

h = C,, C,, C, as k .+ f 00. The curve k = k (h) is symmetric relative to the L-axis 
and the tangent to this curve at the bifurcation points is parallel to the h-axis. 

For example, if the equation B (h) + Y = 0 has six real roots, then the curve h= h(k) 

has six branches intersecting the h-axis to the left and to the right of the values k = c’,, 

C,, CJs and, under condition (4.3), bifurcation points do not exist on these branches since 

all motions (3.1) lying on any one of them possess one and the same degree of instabi- 
lity. If the equation B (h) + Y = 0 has two roots h = h,’ (< C,) and h = hz’ (> C,), 
then the equation dk I cih = 0 also has two roots h = h,, C, < a, < C,, and h = h,, 

C, < h, < C,. Motions (3.1) are stable (x = 0) for h, > h, (h # C,), are unstable (x = 
1) for hi < h < h, , and the degree of instability x = 2 for h < h, (h # c,) . As Y - 
u(v<U)wehave h,‘+-moo, h?’ + + m and in the limit we obtain the geometric 
representation and the distribution of the degree of instability of the permanent rotations 
of a heavy solid body. 
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A solution of the problem of optimal stabilization (in a specific sense) of the rota- 
tional motion of a gyrostat (a solid with two flywheels) in a central Newtonian 

force field is given within the framework of analytical control theory [ 11. 

1. Inftirl equation8 of motion, Formulation of the problem. 
Retaining the notation used earlier @J. let us consider a solid along two of whose princi- 

pal axes of inertia are located the axes of rotation of homogeneo~ symmetric flywheels, 
set in motion by special motors. The gyrostat is in a central Newtonian force field (0, 
is the attracting center, and 0 is the center of mass of the gyrostat). 

Shown in Fig, 1 are the following coordinate systems : 0,X,X2X, - the inertial sys- 

tem, 0~~58_2~ - rigidly coupled to the gyrostat and directed along its principal axes of 
inertia ( OS, and Ox, are the axes of flywheel rotation), 0xi’x2’ x3’ - semi-mobile 
(the Ox,’ axis coincides with the Ox, axis, while the OX,‘, Ox,’ axes do not take 
part in gyrostat rotation around the Oxs axis). Let us introduce the notation: C,,C,, 

Cs are the gyrostat moments of inertia relative to the Ox,x,xs axes, respectively, 
JI, J, are the axial moments of flywheel inertia (for a symmetric gyrostat CI == 
C, == C. J1 ---= J, == J); 41, q2, q3 are the projections of the instantaneous angular 
velocity of the trihedral 0x1fz2’x3f on these axes, pik are the direction cosines of the 
angles between the 0,X1X,X, and OX~‘Z~‘J~~ axes, h,, h,, h, are projections of 


